
IJSRST151550 | Received: 29 December 2015 | Accepted: 04 January2016 | November-December 2015 [(1)5: 238-241] 

                                

© 2015 IJSRST | Volume 1 | Issue 5 | Print ISSN: 2395-6011 | Online ISSN: 2395-602X 
Themed Section:  Science and Technology 

  

 238 

 

Temperature Dependence of Polarizability in Sodium Potassium Tantalate 

Mixed Ceramic System 
Manish Uniyal, H.K.Semwal, S.C.Bhatt  

 Department of Physics, H. N. B. Garhwal University, Srinagar, Garhwal, Uttarakhand, India 

 

 

  

ABSTRACT 
 

Using a quadratic anharmonic model Hamiltonian and using double time temperature dependent Green’s 

function method and Dyson’s equation treatment, expression for polarizability in the frequency response for 

mixed perovskite type ferroelectrics have been obtained. Using the experimentally observed temperature 

dependent dielectic constant, loss tangent, soft mode frequency, width for Na1-xKxTaO3 (x=0,0.2,0.4,0.5 and 

0.6) the polarizability has been calculated for these samples at 10kHz 
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I. INTRODUCTION 

 

The study of polarizability factor for Na1-xKxTaO3 

ceramics is important because it was realized that the 

large nonlinear polarizability of ferroelectrics makes 

them one of the most promising classes of materials 

for electro-optical and optical parametric devices. 

 

A self-consistent of the soft mode frequencies was 

first given by Boccara and Sarma[1] by employing at 

the onset a renormalized phonon basis. Their formal 

treatment represented (the lowest order of) what is 

now called the self-consistent phonon approximation 

(SPA)[2]. This approximation has been very 

successful in describing the anharmonic rare-gas 

solids, including the quantum crystals of solid helium. 

 

Numerical calculations have shown that the SPA 

gives a first – order transition for a model ferroelectric 

containing only fourth order anharmonic interactions 

[3]. This result is surprising because the 

phenomenological Landau (Devonshire) theory 

predicts the transition to be second order when only 

terms up to fourth order in the polarization are 

included [4-6].  

 

 

 

II. METHODS AND MATERIAL 
 

To illustrate the essential features of the self-

consistent phonon approximation (SPA)[2] and to 

understand why a first-order transition is obtained, it 

is instructive to consider a simple model with a single 

degree of freedom,  

 

H=1/2Pl
2(l)+½o

2lQl
2(l)-

1/2llV(ll`)Ql(l)Ql`(l`)+1/2Г1Q4
l(l)  ….. (1) 

 

Here Ql is a localized normal mode coordinate 

describing the ion displacements in cell l, and P(l)is 

the canonical conjugate momentum 

 

[Ql, Pl
’] = iδll’            ………(2) 

 

We set Ql = Q0 + Ul,   where the thermal average Q0 = 

‹ Ql› measures the distortion from the high 

temperature structure, while Ul describes the 

fluctuations about the average value. In the SPA the 

free energy F= ‹ H›-TS is obtained by using a 

harmonic trial density matrix2. The distortion Q0 and 

the effective harmonic force constants are determined 
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by minimizing the free energy. For the Hamiltonian 

given by Eq. (7) the extremum condition, ∂F/∂Q0 = 0 

takes the form 

 

Q0[Ω0
2 – v (0) + г1Q0

2 +3 г1Δ]=0 , ……..(3) 

Where v (0) =ll V(ll`), and Δ is defined below. The 

effective force constants determine the self-consistent 

normal mode frequency. For this model it is given by  

 

ωq
2 = Ω 2 + v (0)- v(q) ~ Ω 2  + α2q2 , ……..(4) 

where  

Ω2= Ω0
2 - v (0) + 3 г1 Q0

2+3 г1Δ  ,………..(5) 

Or, in the distorted phase, using equation (9) 

Ω2 = 2 г1 Q0
2                               ………….(6) 

The correlation function Δ = ‹ UiUj › is determined 

with the help of the fluctuation dissipation theorem6 

 

 Δ= N-1 q ½ ωq
-1 coth 1/2β ωq.  ,……….(7) 

 

for simplicity we consider the limit ωq/kT «1, Δ may 

be approximated by the Ornstein- Zernike form 

 

Δ=kTN-1q (Ω
2 + α2q2 )-1       …………..(8) 

 

Evaluating the summation in the Debye-

approximation, we obtain 

 

         Δ =  Δ0 – Δt                 ……………(9) 

 

where Δ0 = 3kT/ωd
2   and  

 

ΔT = Δ0(Ω/ωd)tan-1(ωd/Ω), 

 

On substituting in equation (9), we get 

Δ =  3kT/ωd
2   - Δ0(Ω /ωd)tan-1(ωd/ Ω) 

    =  3kT/ωd
2   - 3kT/ωd

2 (Ω/ωd)tan-1(ωd/Ω) 

   =  3kT/ωd
2  [1- (Ω /ωd)tan-1(ωd/ Ω)]  ,…(10) 

 

where ωd=α qD, qD  being the Debye wave vector. 

ΔT denotes the contribution to Δ due to long wave-

length fluctuations. For Q0 ≠ 0, Eq. (9 ) may be 

written 

 

 a(T-Tc)+ г1Q0
2 -3 г1ΔT =0 ,……. (11)  

 

where 

a=  9г1KB/ωd
2  ,  Tc= a-1[v(0) - Ω0

2] …. (12) 

and v(0)= Tca+ Ω0
2 ….(13) 

 

Because ΔT is linear in Ω as Ω →0, it follows from 

Eqs. (6) and (11) that the transition is first order. 

However it is important that the linear term giving 

rise to the first order transition is entirely due to the 

long wavelength fluctuations. 

On substituting Eq.6, 7 and 13 in Eq.5,we get the 

expression as 

 

  Q0
2 = 9 KB/ωd

2 [Tc - {1- Ω /ωd tan-1ωd/ Ω }T]   ….(14) 

 

On substituting the experimental results of soft mode 

frequency (Ω), natural frequency of the system (ω d)  

for  Na1-xKxTaO3 (x=0,0.2,0.4,0.5 and 0.6) system , 

we get the variation of  polarizability factor (Q0
2) with 

temperature is given in table 1 and fig.1 at 10Khz. 

Experimental results for Na1-xKxTaO3 system has 

been obtained by S.Glinsek et.al.[7]. The result has 

been obtained by using our previously experimental 

results[8-13] and the theoretical data by earlier 

workers[4,6,14-16]. 

 

Table-1: Variation of Polarizability factor with temperature for Na1-xKxTaO3 system at 10 kHz 

Temp(k) NaTaO3(x10
-47

) Na0.8K0.2TaO3 

(x10
-47

) 
Na0.6K0.4TaO3 

(x10
-47

) 
Na0.5K0.5TaO3 

(x10
-47

) 
Na0.4K0.6TaO3 

(x10
-47

) 

423 8.293 8.69 8.866 9.668 10.558 

443 8.245 8.645 8.766 9.588 10.508 

463 8.191 8.601 8.697 9.561 10.466 

483 8.142 8.522 8.655 9.443 10.333 

503 8.093 8.501 8.635 9.357 10.245 

523 8.038 8.498 8.581 9.297 10.198 

543 7.99 8.47 8.542 9.262 10.101 
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563 7.941 8.402 8.467 9.196 10.057 

583 7.885 8.35 8.388 9.16 9.945 

603 7.781 8.258 8.301 9.048 9.807 

623 7.606 8.105 8.214 8.997 9.721 

643 7.626 7.821 8.143 8.662 9.535 

663 7.541 7.705 7.939 9.09 9.82 

683 7.457 7.601 8.226 8.95 9.675 

703 7.197 8.018 8.17 8.86 9.502 

723 7.402 7.721 7.964 8.667 9.485 

743 7.331 7.688 7.907 8.589 9.207 

763 7.244 7.587 7.815 8.488 9.106 

 

 

 
Figure 1 

 

 

III. RESULT AND DISCUSSION 
 

Polarizability factor (Q0
2) is calculated by using the 

formula obtained by Pytte [14]. The temperature 

dependence of polarizability factor at 10 kHz 

frequency for Na1-xKxTaO3  has been shown in figure 

1.  For  Na1-xKxTaO3 [x=0, 0.2, 0.4, 0.5 and 0.6]  

transition temperature are found at 703oC, 683 oC, 663 

oC, 643 oC and 640 oC respectively. From these figures 

it is observed that polarizability factor tends to 

minimum up to the transition temperature thereafter 

increases with the increasing temperature and hence 

showing anomaly at transition temperature. The 

nature of polarizability factor is found to be in good 

agreement with the results obtained theoretically by 

Pytte [15]. 
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Variation of polarizability factor w ith temperature for Na1-xKxTaO3 system      

at 10 kHz
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